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ELECTROELASTIC WAVES IN POLARIZING MEDIA™

Report to the Fifth All-Union Congress on Theoretical
and Applied Mechanics. Alma-Ata, 27 May 1981
V.A. ZHELNOROVICH

A system of equations is considered that describes a certain class of polarizing
media in an electromagnetic field with both the spatial inhomogeneities and the re-
laxation processes of electrical polarization of the media taken into account. The
nonlinear and the linearized theories are elucidated within the framework of the
electrostatic approximation. Solutions are given for the equations considered in
an electrostatic approximation, in the form of electroelastic waves. Without taking
the relaxation of the electrical polarization into account, electorelastic waves
were considered in piezoceramic media in /1/ and in ferroelectrics in /2/.

1. Models of polarizing media in an electromagnetic field. Let o, 2% (a = 1, 2,
3) be the bases and variables of the Cartesian coordinate system of the observer in the
three-dimensional, physical (Buclidean) space V, and 3@, g% are the bases and variables of
the coordinate system of the accompanying (Lagrange) space for the continuous medium consid-
ered in V. Let us define the mass density of the medium p, the finite strain tensor
e"“"’s‘é\aé\ and the velocity vector of the medium v = v*3, by the relationships

. 1 . da®
p=po(gN)l el = (gl —gap) v*=-T—, g"=det | giy| (1.1

Here gqg™ are the metric tensor components in the accompanying coordinate system, gap”
are the metric tensor components of the space of initial states defined on the manifold &%,
and d/dt is the symbol of the substantive derivative with respect to time ¢ (for constant
Lagrange variables %)

Let P = P%, be the three-dimensional electrical polarization vector of the mediumwhich
is invariant relative to the selection of the inertial coordinate system of the observer /3,4/,
E = E*4 1is the electrical field intensity vector, D = D%, the electrical inducation vector,
H = H%;, the magnetic field intensity vector, and B = B%, the magnetic induction vector.
Polarizing media for which the magnetization is zero by the condition in the intrinsic basis,
will be considered below. In this case the vectors D and H are related to the vectors £, B, P
by the equation (¢ is the speed of light in vacuum)

D =E -+ 4nP, H = B 4 4n/c [v, Pl (1.2)

The vectors E and B can be expressed in terms of the scalar and vector potentials by the
equalities
B=rotA, E=—grado— ~ 2 4 (1.3)
Here 0/0t is the symbol of partial differentiation with respect to time for constant vari-
ables  z%.
Let us consider the class of models of a polarizing medium in an electromagnetic fields
described by the system of dynamic equations:

divD=0, rot H =2
¢ ot

1

D, rtE=—-—-2B, divB=0 (1.4)

2 oo = 5Pl + Qo+ - (BaduHN — HoBy + DrdoEh — E*9D)

0o 5 O

1 A
Eo 4 — 0, BIF + G5 — O 5 5= 11"

. d
PT—f,t—=—aaq“ + t*Peap + H“(a—:Pa_[“” PJ“)

of + 28 —0, 2 4 pdive=0
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The symbol 8, = 8/0x* denotes the partial derivative with respect to the variable %@ =
Y/yrot v is the vortex velocity vector, esp = Y/, (davp + Opvs) are the strain rate tensor compon-
ents, Qu are components of the external volume force vector acting on the medium, 7T is the
temperature in the equilibrium processes, s is the specific entropy density, 1**f are compon-
ents of the viscous stress tensor, ¢* are components of the thermal flux vector, and the
components of the vector II* govern the relaxation process of the electrical polarization of
the medium. The components of the tensor Pgum in equations (1.4) are defined by the relation-
ship

A A
Plmy = — puap — ——%- 238 4 =2

F) 1 1 *B i
o 75 5GP;‘—5,,B[A.,+-2—P,,(E’« +imw B]’-)]+t¢ 4 5 (PalIf — PPIL;)  (1.5)

where z,* = 9z%/0E¥ is the distortion, A, is a given function of the system of arguments

zy%, Pq, 03Pq, s, K¢ (1.6)

and K¢ are given constant tensors (dKq/dt = 0) governing the anisotropy of the medium, for in-
stance.

Equations (1.4) and (1.5) can be obtained from the variational equation /3—9/. In this
case the function A, is a part of the Lagrangian. The equations being considered here differ
from /3/ only in that the more general Onsager relationships governing the relaxation term II®
are used later.

The system of equations (1.4) and (1.5) contains the Maxwell equations for the electro-
magnetic field in a medium, the momentum equations, the equation for electrical polarization
of the medium, the continuity equation for the mass density of the medium, the entropy balance
equation, and the equation for the temperature. The energy equation

1 .
o {eem 4 5 (DaB* + HaB®) + —-va (B, PI1*) 4 3 {ebm + 5 (£ HIP + 0P |B, PP} = Qo (1.7)

in which the volume energy density of the medium g,y and the energy flux vector components of
the medium 8&” are defined by the relationships

e = - pv* — - Po (B2 4= [0, BI) — Ao (1.8)

A, d
ey = ¢B + e — (pvgv® + Plom)v® + “T;a"d? Py

follows from (l.4) and (1l.5).

Components of the viscous stress tensor 1**#, components of the:thermal flux vector ¢%,
and the relaxation term II* of the equation describing the polarization of the medium should
be given to close the system of equations (1.4) and (1.5). On the basis of the expression for
the internal entropy production d;s/dt, which can be given in the Onsager form

diS

1 d
OT 552 — — 7 70T + viabegq 4 [ <T Py — [0, P]a> (1.9)

by definition, the following estimations for the quantities t*®B II%*, ¢* can be taken for ex-
ample: .
*af — ToPAD api (—— —
T T €rp +b at Pl [w’ P]?w) (1.10)

1% == gaB (% Pg—[o, P]ﬁ) -+ s%Bhegy, + maBYgT
d
g% = — x*FdpT 4 P (T Py — [, Pls)

The coefficients <, &, 8, m, 1, % in (1.10) can be given in the form of functions of the
governing parameters of the medium and the field in such a way that the condition d;is/dt > 0
would be satisfied.

For fixed bodies the relaxation of electrical polarization is ordinarily determined by
the relaxation term =% ~ dP%d:. The expression (1.9) postulated here for the internal entropy
production because of polarization for moving media is based substantially on the generalized
expression for N%* in the form % ~ &p%dt = dP%*d: — |, P]% where d'/dt is the time deriva-
tive in a basis that moves and rotates with the particle of the medium,

Physical specification of the class of models described by equations (1.4), (1.5), (1.9)
and (1.10) is associated with giving definite form to the functions A,, ¢%, II%, t*#8. In part-
icular, cases when the quantities 2z are in the function A, in terms of the strain tensor
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components a(fﬁ correspond to models of elastic polarizing media. Cases when the quantities
zf, are in A, in terms of the mass density of the fluid p correspond to models of liquid
polarizing media. For example, if A, = A, (p, s, P«, K¢), then we have for the components of the
tensor Plm in the momentum equations in (1.4)

Pimy = — prap® — piaP — T - L (P11 — PAIT,) (1.11)
A/ 1 1
p=— 2T P (EY 4 L, B

In the electrostatic approximation the system (1.4) becomes

. di . 4 1
divD =0, rot £=0, —d—2—+pd1VU:0, —at—pva;—.aﬁpgm)—]—Qa—}——i—(P,ﬁaEh——EkaaP;“) (1.12)

A,
op,

A,

9
38, P, =II* ol +

A d d
=0, pT = 0ag® -+ 1¥Peqp + II* <T Py — (o, P]a)

E*+ —a,

The components of the tensor Pg(,,,) in (1.12) are defined by (1.5).

In the electrostatic approximation the components of the electrical intensity vector £
are expressed in terms of the potential ¢ by the equation K = —grad ¢ consequently an equa-
tion for the potential ¢

A¢ = 4n div P (L.13)

can be taken in place of the Maxwell equations in (1.12).

2. Linearized theory of polarizing media in the electrostatic approximation.
Let us define the displacement vector of points of the media u = u%, by the equality u =r —
ro in which r is a radius-vector of points of the medium at the current time, and ry is a
radius-vector of points of themedium in the initial state. We shall furthermore consider that
the Cartesian coordinate system of the observer and the accompanying coordinate system agree
at the initial time ¢ = #,. Let us examine the motion of the medium for which the gradient of
the displacement vector and the gradient of the polarization vector of the medium are small,
while the components of the polarization vector P, the temperature 7, the entropy s, the
mass density of the medium p and the components of the electrical induction vector FE wvary
little relative to the equilibrium (constant) values Py, Ty, $4 0o #,. Assuming that

Po=Po+4p% s=s,+s, p=py+p, E*=E*+ ¢ (2.1)
where p%, sy, p1, €% are small quantities, considered as first order infinitesimals, the function

A, can be expanded in series in ugp = Ogua, Oaps, ps, ;- Limiting ourselves to second order of
smallness in such an expansion, we obtain

— Ng== ~;— haﬁheuaﬂuke 4+ _;__ a“m‘eaapsaxpe -+ u“ﬁ"euaﬁahpe 4 (2.2)
i
§BMugapy, - B%BMpedapy, + nBlgps: + v¥Psidapp + = Vo -

h;— B*Bpapp -+ B pasy + Q*Puap + C*Pdapp + C*po. -+ poTos1 -+ const

The constant coefficients of the small guantities in formula (2.2) can be expressed in
terms of the function A, and the derivatives of A, evaluated in the initial state. If (2.2)
for Ay is not taken with respect to exact nonlinear theory, then the specific values of the
coefficients in (2.2) can be associated with the additional assumptions, in particular, with
respect to the symmetry properties of the medium. If the stresses in the medium are zero in
the initial state, then (@¢f =0 should be inserted in the expansion (2.2). According to the
definition, the coefficients A, a,  in (2.2) always possess the following symmetry properties

AOBAS — \ABaB  gaPAO — ABaB,  fBab — fBx
Furthermore, we take

proB — 19BMgyg g% == — BT, T1% == 5B <T§z_ Py — o, P]s) (2.3)

for the quantities t*® ¢* TI* in O&W* .
In the presence of the relationships (2.3), the linearized equations corresponding to the
function A, defined by (2.2) have the form



Electroelastic waves in polarizing media 857

rote=0, div(e+ 4np)=0 (2.4)
% —BBpg — Q%FAaps, — [HVPuyy + aP*MO0a0, pp — P51 +
a8

BN, + QUOTgp, + VPR0gsy =58 (2 py — @, Palg)
_ a2y’ No 1A r'\"mn_ Lo aBASA. p. L FaRA, '
Po —gp— == 0% + G | A*PM0ure + PR Orpe + 5*F4py, +-

(N*B +4- poT'o5%B) 5, + to:BrE '% ure + 5~ ! (P18 — PP HG):’
po (I — T'o) = n*Puag + v*Pdapp + vs1 + B*pa

—~— 01+ poamva =0

3. Isentropic waves in elastic polarizing media. In an electrostatic approxima-
tion let us consider the class of models of elastic polarizing media for which the function
A, has the form

— Ro= 22 PP (PR, Ko) + MM elpely + LoPelpPy + A5%fy (3.1)
where P§ are components of the polarization vector of the medium evaluated in the appropriate
coordinate system, f is a given function of the arguments noted in (3.1) that governs the ani-
sotropy energy, & is a given constant; the constant components of the tensors K¢, x‘[’,‘”‘e, “B
Q’,‘" are given as a function of the form of symmetry of the medium. In linearized theory, tne
function —A, defined by (3.1) is written in the form of (2.2) in which

A 1 af 3.2
A0 _ papno +Caﬁepox+;xeﬁpou_Tga;.[poo( 357 )0+ (3.2)
saf 3 YT, nnnaf o\ 1 KA {NBR 1 NRGY 1 Ke8NAR 1 SAB el
FoP T For 0" T T VAT T YR T YT " )
(%25 ), P Sopary ), % @) ¢ oY
8
zaph _pofh 4 gar (L 4 pa( L)
\arp /o \ oPp3P} /g
o 41 poy (U pap AT gap (U )
e—1 \"or2 /, e—1 \apgorp ),
GoB=2PAp, 4 Pye ( af ) + Lﬁ‘ﬁ, 0B — paBM — Qubh = Cab =0

The parentheses ( ), here denotes that the function in the parentheses is evaluated in
the initial state. Furthermore, we examine the case (corresponding to piezoceramic media, for
instance) when the polarizing medium possesses axial symmetry, there are no external forces
(Qx = 0), and the function f and coefficients I A% AP i A and the coefficients SaB  apre
in (2.3) are defined by the relationships

= %‘(ﬁlc’&"‘ﬁ + Bo°nonB) PLPE, 598 =1, (898 — nenb) } v nonb (3.3)
gﬂk — §1°n°‘nﬂn" -+ ;20&13"} + Cso (Ga}.nﬁ + 6ﬂlna)' 1BA — ()
AZBMO ), 98uBEA0 - Ag° (5%A5BO - §X05BK) - A5° (83AnBn®
§%6nBnh 4 5*Bpand - §80n%nt) 4 A,° (8%Bnin® - Gr6nenb) 4

AsnonBntn®, ASP = q,80B + g,nond

in which n* are components of the unit vector directed along the anisotropy axis, and f5°, T, L%,

2%, a are constants. Assuming the vector of constant polarization of the medium directed
along the anisotropy axis P¢® = P,n*, we find for the coefficients [%A fab AeBAe (o Qaf
B = B182 4 BanonB, [Pt — [inanfpti- [o80fnt 4 [0PAna - 1 50Mnb (3.4)

Q%8 = [as + Po (1" + 285°) + Po? (Br” + B2°) nonb + (ay - Pols”) 696, (o =pgobp
ARBAD —— ), 5eBYAE L ), (Br5BO 50:85(3}.) + AghernBpb 4-
Mg (6%0nBn® - 8*6n2n8) |- As5BOnand - Ag (8°BnAn® + 80nonB) - An%nbpin®
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The coefficients &, [, p in (3.4) are related to the coefficients A°, ¢°, p° in (3.3) by
the equalities

51=51°+—e‘éj—1’ Ba=P" Li=0"+ Pofy®, (=102 Ls=10s"+ Poby® (3.5)

§4 = gao'i' (ﬁ10+ ﬁ2o) Po, xl: }‘10= 7~2= 7\20, 7\3 == 7‘30— Po2 (ﬂlo‘l‘ ﬁzo)
Ap==hs® + Pols’s ks =1 + Po (20" 4 Pofs’) he=A + Pols®s hy=12As" + Py (20:° + Pofy?)

The condition of no stresses in the initial state (Q*® = () is satisfied if the coeffic-
ients @, a; in (3.3) are defined by the equations

a1+ Pl =0, a2+ Po(l:® + 285°) + P (B1° + Bo°) =0 (3.6)

Let us note that the components of the tensor EP* in A, governing the piezoelectrical
energy are not symmeétric in the superscripts a, p in the general case, hence, the equation for
the polarization in (2.4) relates the components of the electrical field intensity vector e*
to not only the strain tensor components egp == Y, (Uas + Upe) (as in ordinary linear theories)
but also the components of the rotation vector of the strain axes Q, = !, rotq . In the same
way, the elastic energy Y,A*Muggu,g depends on both e,y and on Q.

Assuming the relationships (2.3), (3.1)— (3.7) satisfied, let us examine the solution of
equations (2.4) in the form of plane isentropic waves

pr=po*expi(lpz* — o), u*=u%expi(hz* —ot), e*=-e*expi(krt— ot)

were k) are the wave vector components, o is the wave frequency, and p%, u.*, e,* are constant
amplitudes. We first examine the case when k) = kny. From the Maxwell equations, the equations
for the polarization, and from the momentum equations in (2.4) we find

€% = — 4kl pY,  p* = me® + Nannper 4 0,u* + Onnyut (3.7)
{[pomz — k2 (M g — - Pyt )] 60 —
(= ha 4 20+ As - 2ho o by -+ - Pofor, ) Kenenb ug -+
. 1 , 1
k {(1C4 - P0m1i> 5B - [l 1+ 8+ Ts) + - PO(DTL] nanﬁ} pp=0
The coefficients m, 8 are defined as follows:
1 1
M= e T T BT (3.8)

By = kmy (— i€+ %Pown), Oy — O — ik (b me) Gt Lo -8+ L)

A dispersion equation for the longitudinal (3.9) and transverse (3.10) waves follows from

(3.7) .
G+ 84T+ 502
po(1)2= k2 [7\1 -+ 27\.2+7¥3+2)V4+7¥5 +27\'6 -+ 7“7_ 4n1+ B+ ﬁz—iu)ﬂ“ ] (3.9)
pomzzk2[12+13+Po§4+%P0231—%] (3.10)

If the axis 2z of the coordinate system is directed along the constant polarization vec-—
tor of the medium P,, then we have for the longitudinal wave described by the dispersion
equation (3.9)

ur = (0,0, u), p*=(0,0,p), e*=(0,0,4np) (3.11)

The quantities u, p in (3.11l) are connected by the relationship

ik (G L2+ & + L)
p:—um (3.12)

For the transverse wave described by (3.10), we have

pp =0, ex =0, ux = (@, u 0), p==(p', p?, 0) (3.13)
where
oy 2 DT (3.14)

2 By — ioT
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In the case when the wave vector k is orthogonal to the constant polarization vector of
the medium kzn* =0, the dispersion equation for the longitudinal wave has the form

pow® = k2 (A1+27¥2_ & (3.15)

ﬁx‘f’ﬂz"‘i(‘)“” )

In the case when kun® =0, the dispersion equations for the transverse waves are written
as follows P00 = Agk? (3.16)

[Ls — YePo (41 1 By) ]2 }

Do — k. {xz A —Pubs + o Po? (4t + pr) — L o

The relation between p% u® in the case under consideration has the form

1 2ils+ Pomr_L

A e T bk — —— A .
T T R er, K nekpu (3.17)

Pr=— By + P — ioor

The dispersion equations (3.9), (3.10), (3.15), (3.16) are third order equations in the
frequency o and of second order in the wave vector components ki in the general case (solved
explicitly for k?). It is seen from (3.9), (3.10), (3.15) and (3.16) that the coefficient 7
in the relaxation term II* of the equation for the electrical polarization of the medium
governs the transverse wave attenuation, while the coefficient 71, governs longitudinal wave
attenuation. If relaxation of the electrical polarization is not taken into account [I* = 0
(tp = vy = 0), then the dispersion equations (3.9), (3.10), (3.15), (3.16) define the customary
elastic waves whose propagation velocity depends on the constant coefficients {, p in A,
governing the anisotropy energy and the piezoelectrical energy. Let us note that for ¢, ,= 0
(when the piezoelectrical energy is not taken into account), attenuation of the longitudinal
waves considered also does not occur; attenuation of the transverse waves occurs even in the
absence of the piezoelectric effect.

All the dispersion equations obtained above have the form

p0m2=k2<a—c—_biE> (3.18)
where @, b, ¢, T are certain positive constant. In application to elastic polarizing media
such dispersion equations were considered (for v =0) in /1/, for instance. The equation
(3.18) yields the complex value @ = 0, — ¥ for ® in taking account of polarization relaxa-
tion when Tt 0, where the decrement y governs the wave attenuation. From (3.18) we obtain
that the decrement ¢y is related to the wave vector as follows:

(2ey—cp

(th)? = — 2poty 20ty — b

(3.19)

A graph of the function ty = f(vk) defined according to (3.19) in the physically real case
when b/a<< ¢ is a monotonically growing curve tangent to the axis 1k at the point 0 and hav-
ing the horizontal asymptote w = b/2a.

If the spatial inhomogeneity of the electrical polarization of the medium is taken into
account (by inserting the term a“’*VQPﬁ~V{,\P/\ﬁ in (3.1) for A,), then the dispersion equa-
tions (3.9), (3.10), (3.15), (3.16) retain their form if the coefficient §, therein is replac-
ed by the coefficient B,* defined by B,* = B, + a%koks.

The author is grateful to L.I. Sedov for discussing the paper and for useful remarks.
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